Carbon clusters: From ring structures to nanographene
نویسندگان
چکیده
منابع مشابه
Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons
Investigations of diffusive-ballistic heat conduction of finite-length single-walled carbon nanotubes and nanographene ribbons at room temperature have been carried out by using nonequilibrium molecular dynamics simulations. The length dependences of thermal conductivity reveal the variation of the balance between ballistic and diffusive heat conduction. For both systems, the profile indicates ...
متن کاملDynamics of clusters: from elementary to biological structures.
Between isolated atoms or molecules and bulk materials there lies a class of unique structures, known as clusters, that consist of a few to hundreds of atoms or molecules. Within this range of "nanophase," many physical and chemical properties of the materials evolve as a function of cluster size, and materials may exhibit novel properties due to quantum confinement effects. Understanding these...
متن کاملEnergetics of large carbon clusters: Crossover from fullerenes to nanotubes
The energetics of large-sized fullerenes and carbon nanotubes is investigated through first-principles pseudopotential calculations for the carbon cluster of CN (60<N<540). The strain energy due to the presence of pentagons, in addition to the curvature effect, makes an important contribution to the energetics of the fullerenes and nanotubes and accurately describes the N dependence of the ener...
متن کاملModeling AAA+ ring complexes from monomeric structures.
AAA+ proteins form large, ring-shaped complexes, which act as energy-dependent unfoldases of macromolecules. Many crystal structures of proteins in this superfamily have been determined, but mostly in monomeric or non-physiological oligomeric forms. The assembly of ring-shaped complexes from monomer coordinates is, therefore, of considerable interest. We have extracted structural features of co...
متن کاملA grossly warped nanographene and the consequences of multiple odd-membered-ring defects.
Graphite, the most stable form of elemental carbon, consists of pure carbon sheets stacked upon one another like reams of paper. Individual sheets, known as graphene, prefer planar geometries as a consequence of the hexagonal honeycomb-like arrangements of trigonal carbon atoms that comprise their two-dimensional networks. Defects in the form of non-hexagonal rings in such networks cause distor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2010
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.81.195414